火力发电厂SCR
作者:管理员    发布于:2016-06-17 14:59:51    文字:【】【】【

火力发电厂SCR
火力发电厂选择性催化还原(SCR)法脱硝技术
目前,我国发电装机容量已突破 4 亿 kW,绝大多数为燃煤机组。以火电厂为主排放的 SO2 和 NOx 不断增加。尽管 NOx 所带来的危害有目共睹,但目前我国火电厂环保措施主要 集中于脱硫处理, 而在控制 NOx 排放方面则刚刚起步, 与世界先进国家相比尚有很大差距, 主要原因是这项技术发展较晚,需要的投资较大;另一方面,我国目前对 NOx 排放的要求 较低,新建火电厂锅炉燃烧器只需采用低 NOx 燃烧技术就可以达到国家排放标准,故脱硝 技术在整个火电厂环保措施中所占的比重较小。 针对这些问题, 我国已着手进行烟气脱硝示 范工程,要求已建和新建火电机组要逐渐把脱硝系统列入建设规划,到 2010 年,从目前的 新建火电厂规模考虑,排除采用其他方式脱硝的机组。专家估测认为,至少有 2 亿 kW 的机 组容量需要建设脱硝系统, 在脱硝项目上会形成可观的市场规模。 脱硝领域正在迅速形成一 个总量达到 1 100 亿元的大市场。它将是继火电厂脱硫技术后,又一个广阔的极具爆发性增 长的市场。从 2004 年底的“环保风暴”到 2005 年初的《京都协议书》正式生效、从国家不断 发布扶持政策鼓励电力环保到大手笔的拨款资助, 表明国家对电力环保产业化发展的支持力 度越来越大,而烟气脱硝产业正是在此背景下进入快速发展时期。


 烟气脱硝是继烟气脱硫之后国家控制火电厂污染物排放的又一个重点领域。2004 年 7 月,我国公布并实施《火电厂大气污染物排放标准》,对火电厂 NOx 排放要求有了大幅度 的提高, 并将成为控制火力发电厂大气污染物排放、 改善我国空气质量和控制酸雨污染的推 动力。今后,国家将对重点火电企业以发电污染物排放绩效为基础,制定全国统一的火电行 业 SO2 和 NOx 排放总量控制指标分配方法,并由国家统一分配 30 万 kW 以上火电企业的 排放总量控制指标。从“十一五”开始,国家与省级环保部门将对 30 万 kW 以上的火电企业 的 SO2、NOx 排放总量控制指标实施共同监控。

 目前应用的火电厂锅炉脱硝技术中, 选择性催化还原 (Selective Catalytic Reduction 简称 SCR) 法脱硝工艺被证明是应用最多且脱硝效率最高、 最为成熟的脱硝技术, 是目前世界上先进的 火电厂烟气脱硝主流技术之一。 1975 年在日本 Shimoneski 电厂建立了第一个 SCR 系统示范 工程,其后 SCR 技术在日本得到了广泛应用,大约有 170 套装置,接近 100 GW 容量的电 厂安装了这种设备。在欧洲已有 120 多台大型装置的成功应用经验,其 NOx 的脱除率可达 到 80%~90%。美国政府也将 SCR 技术作为主要的电厂控制 NOx 技术。


  SCR 法是一种燃烧后 NOx 控制工艺,关键技术包括将氨气喷入火电厂锅炉燃煤产生的烟气 中; 把含有 NH3(气)的烟气通过一个含有专用催化剂的反应器; 在催化剂的作用下, NH3(气) 同 NOx 发生反应,将烟气中的 NOx 转化成 H2O 和 N2 等过程,脱硝效率≥90%。目前,利 用该项技术的产品在全球占有率高达 98%,居世界发达国家烟气脱硝技术首位。

 在我国,1995 年第一次修订《大气污染防治法》时,就在增加的有关条款中要求“企业应当 逐步对燃煤产生的 NOx 采取控制的措施”; 1996 年修订火电厂排放标准时, 对新建 30 万 kW 以上火电机组提出了 NOx 排放控制标准,《火电厂大气污染物排放标准》GB13223-2003 对新老机组提出更严格的 NOx 排放浓度限值;在 2003 年 7 月 1 日开始实施的 《排污费征收 使用管理条例》中,也规定对 NOx 征收排污费,征收标准与 SO2 相同;电力工业环境保护 “十五”规划中,提出“大力推广低氮燃烧器及采用分级燃烧技术;现有 20 万 kW 火电机组开 始启动低氮燃烧技术改造,“十五”期末,力争在运行锅炉上完成排烟脱硝工业示范试验”。 20 世纪 90 年代建成的福建后石电厂 60 万 kW 火电机组已建成排烟脱硝装置,NOx 排放浓 度 85 mg/m3,远低于 650 mg/m3。由此可见,对火电厂排放 NOx 实行总量控制已具备法律、 排放标准、排污收费、治理技术等方面的条件。“十一五”对火电厂排放 NOx 实施总量控制 将是最佳的时机。

 

相对于火力发电脱硫,烟气脱硝是控制火力发电污染排放的更高要求。由于技术的特殊性, 烟气脱硝装置必须与电厂建设同步进行。2005 年 4 月,电力规划设计总院主持召开火电厂 烟气脱硝技术及 SCR 脱硝装置预留方案专题研讨会,对在大容量常规燃煤火电机组的建设 中预留烟气脱硝装置的设计方案进行了分析研究。 根据 GB13223-2003 中“第 3 时段火力发 电锅炉须预留烟气脱除 NOx 装置空间”的要求,结合我国火电厂脱硝技术现阶段的实际情 况,2004 年 1 月 1 日起新建的 300 MW 及以上容量燃煤锅炉,须暂按 SCR 预留脱硝装置空 间。重点对 SCR 反应器布置场地预留、催化剂层数及荷载预留、炉膛瞬态防爆压力的选取、 空预器改造条件预留、引风机改造条件预留、电除尘器设计选型要求、还原剂储存、制备场 地的预留等技术方案进行了充分的论证并形成了初步意见。

 

2005 年,哈尔滨锅炉厂有限责任公司与三菱重工业株式会社正式签署了脱硝 SCR 技术转让 协议,成为国内首家引进脱硝技术的企业。此次哈锅 SCR 脱硝技术转让协议的签署,将为 我国燃煤电厂控制 NOx 排放提供重要的技术支撑。

 

2005 年,东方电气集团东方锅炉(集团)股份微购彩票充值正式与恒运集团公司广州恒运电厂 签订了 2× 万 kW 火电厂机组烟气脱硝工程项目总承包合同。此举打破了国外厂商对我国 30 脱硝领域的垄断, 东方锅炉成为国内首家获得大型火电机组烟气脱硝工程项目的制造商。 东 方锅炉不仅从鲁奇比肖夫公司引进了 SCR 技术,还在 2004 年 11 月与德国 KWH 公司合资 生产烟气脱硝所需要的催化剂,形成年产 4 500 m3 催化剂的生产能力,从而为烟气脱硝实 现国产化打下了良好基础。


 厦门嵩屿电厂二期机组 SCR 烟气脱硝反应器第一套日前已制作完成。嵩屿电厂二期两台 30 万 kW 燃煤机组是国内首家增加了脱硝技术的国产机组。该脱硝设备投入使用后,脱硝效率 达 60%,NOx 排放小于 180 mg/ mN3,大大低于 GB13223-2003 中小于 450 mg/mN3 的排 放标准。
目前,北京大唐高井热电厂于 2006 年开始对锅炉烟气进行脱硝改造,采用 SCR 技术,脱硝 率可达 80%。到 2007 年年底全部改造完成后,高井热电厂将成为北京市惟一进行锅炉烟气 脱硝的电厂,锅炉排烟中 NOx 将低于 200 mg/ mN3。

江苏太仓电厂 2× 600 MW 超临界发电机组脱硝项目以 SCR 工艺为基点,运用现代设计技术 实施平台化开发,技术起点高、实施手段先进,整体技术性能达到国际先进水平。


 1 SCR 法原理及流程

SCR 技术是还原剂(NH3、尿素)在金属催化剂作用下,选择性地与 NOx 反应生成 N2 和 H2O,而不是被 O2 所氧化,故称为“选择性”。金属催化剂有贵金属和非贵金属两类。主要 反应如下:
 4NH3+4NO+O2→4N2+6H2O 4NH3+2NO2+O2→6N2+6H2O SCR 系统包括催化剂反应室、NH3 储运系统、NH3 喷射系统及相关的测试控制系统。SCR 工艺的核心装置是催化剂反应器,有水平和垂直气流两种布置方式,如图 1 所示。在燃煤锅 炉中,烟气中的含尘量很高,一般采用垂直气流方式。


采用催化剂促进 NH3 和 NOx 的还原反应时,其反应温度取决于所选用催化剂的种类。当采 用钒或铁氧化物类的催化剂时, 其反应温度为 300~400 ℃。 当采用活性焦炭作为催化剂时, 其反应温度为 100~150 ℃。因此,根据所采用的催化剂的不同,催化剂反应器应布置在尾 部烟道中相应温度的位置。 1.1 布置在空气预热器前 这是工业应用中常用的一种布置方式,如图 2 所示,此时烟气中的全部飞灰和 SO2 均通过 催化剂反应器,反应器的工作条件是在未经除尘的烟气中。这种布置方案的烟气温度在 300~500 ℃,适合于多数催化剂的反应温度,因而它应用最为广泛。但是,因催化剂是在 未经除尘的烟气中工作,故催化剂的寿命会受下列因素的影响: (1)烟气携带的飞灰中含有 Na、K、Ca、Si、As 等时,会使催化剂“中毒”或受污染,从而 降低催化剂的效能; (2)飞灰对催化剂反应器的磨损; (3)飞灰使催化剂反应器蜂窝状通道堵塞; (4)烟气温度升高,会将催化剂烧结,或使之再结晶而失效; (5)烟气温度降低,NH3 会和 SO3 反应生成(NH4)2 SO4,从而会堵塞催化反应器通道 和空气预热器; (6)高活性的催化剂会促使烟气中的 SO2 氧化成 SO3,因此这种布置应避免采用高活性的 催化剂。 为了尽可能延长催化剂的使用寿命, 除了应选择合适的催化剂之外, 要使反应器通道有足够 的空间以防堵塞,同时还要有防腐、防磨措施。 1.2 布置在静电除尘器和空气预热器之后 在这种方案中,温度为 300~500 ℃的烟气先经电除尘器再进入催化剂反应器,这样可以防 止烟气中的飞灰对催化剂的污染和将反应器磨损或堵塞,但烟气中的 SO2 始终存在,因此 烟气中的 NH3 和 SO3 反应生成(NH4)2 SO4 而发生堵塞的可能性仍然存在。这一方案的 最大弊端是静电除尘器无法在 300~500 ℃下正常运行,因此很少被采用。 1.3 布置在湿法烟气脱硫装置之后 当锅炉尾部烟道中装有湿法烟气脱硫(FGD)装置时,可将催化剂反应器装于 FGD 装置之后, 如图 3 所示。 由于不存在飞灰对反应器的堵塞及腐蚀问题, 也不存在催化剂的污染和中毒问 题,因此可以采用高活性的催化剂,并使反应器布置紧凑,以减少反应器的体积。当催化剂 在除尘后烟气中工作时,其工作寿命可达 3~5 年(在未除尘的烟气中工作寿命为 2~3 年)。 这一布置方案存在的问题是: FGD 装置排烟温度仅为 50~60 ℃, 为使烟气在进入催化剂反 应器之前达到所需要的反应温度, 需要在烟道内加装燃油或燃烧天然气的燃烧器, 或蒸汽加 热的换热器以加热烟气,从而增加了能源消耗和运行费用。 当催化剂反应器在尾部烟道的位置确定以后,含有 NOX 的烟气和混有适当空气的 NH3 在 反应器人口处和烟气混合,然后进入反应器内的催化剂层。 催化剂反应器的内部结构如图 4 所示。通常,先将催化剂制成板状或蜂窝状的催化剂元件, 然后再将这些元件制成催化剂组块, 最后将这些组块构成反应器内的催化剂层。 催化剂层数 取决于所需的催化剂反应表面积。 对于工作在未除尘的高尘烟气中的催化剂反应器, 典型的 布置方式是布置三层催化剂层。在最上一层催化剂层的上面,是一层无催化剂的整流层,其 作用是保证烟气进入催化剂层时分布均匀。通常,在第三层催化剂下面还有一层备用空间, 以便在上面某一层的催化剂失效时加入第四层催化剂层。 2 影响 SCR 脱硝率的因素 在 SCR 系统设计中,最重要的运行参数是反应温度、反应时间、NH3/NOx 摩尔比、烟气流 速、O2 浓度、NH3 的溢出浓度、SO3 浓度、H2O(蒸汽)浓度、钝化影响等。 反应温度是选择催化剂的重要运行参数, 催化反应只能在一定的温度范围内进行, 同时存在 催化的最佳温度, 这是每种催化剂特有的性质, 因此反应温度直接影响反应的进程。 SCR 在 工作过程中温度的影响有两方面: 一是温度升高使脱 NOx 反应速度加快, NOx 脱除率升高; 二是温度升高 NH3 氧化反应开始发生,使 NOx 脱除率下降。

反应时间是烟气与催化剂的接触时间,随着反应时间的增加,NOx 脱除率迅速增加,当接 触时间增至 200 ms 左右时,NOx 脱除率达到最大值,随后下降。这主要是由于烟气与与催 化剂的接触时间增大,有利于烟气在催化剂微孔内的扩散、吸附、反应和生成物的解吸、扩 散,从而使 NOx 脱除率提高。但是,随着接触时间过长,NH3 氧化反应开始发生,使 NOx 脱除率下降。 NOx 脱除率随着 NH3/NOx 摩尔比的增加而增加,NH3/NOx 摩尔比小于 1 时,其影响更加 明显。若 NH3 投入量偏低,NOx 脱除率不高;若 NH3 投入量偏高,NH3 氧化等副反应的 反应速度将增大,从而降低了 NOx 脱除率,同时也增加了净化后烟气中 NH3 的排放浓度, 造成二次污染。一般控制 NH3/NOx 摩尔比在 1.2 以下。 另外, 烟气流速直接影响 NH3 与 NOx 的混合程度, 需要设计合理的流速以保证 NH3 与 NOx 充分混合使反应充分进行;同时反应需要 O2 的参与,随着 O2 浓度增加,催化剂性能提高, 但 O2 浓度不能过高,一般控制在 2%~3%;NH3 的溢出浓度是影响 SCR 系统运行的另一 个重要参数,实际生产中通常是多于理论量的 NH3 被喷射进入系统,反应后在烟气下游多 余的 NH3 称为 NH3 的溢出, NOx 脱除效率随着 NH3 的溢出量的增加而增加, 在某一个 NH3 的溢出量时达到一个最大值;另外 H2O(蒸汽)浓度的增加使催化剂性能下降,催化剂钝 化失效也不利于 SCR 系统的正常运行,必须加以有效控制[1]。 3 SCR 法存在的问题 3.1 催化剂的活性和成本 催化剂的设计寿命决定着 SCR 系统的运行成本。催化剂失去活性主要是指高温烧结、磨损 和固体颗粒沉积堵塞而引起催化剂活性破坏。SCR 系统所出现的磨损和堵塞可以通过反应 器的优化设计(设置自动的导流叶片装置,倒转 NH3 的喷射方向使之与流动方向相反)加 以缓解。如果废气中有粉尘,为了保证催化剂表面的洁净,在反应器中安装吹灰器是很有必 要的。如果废气中含有能使催化剂中毒的固体颗粒物,则废气需进行预处理,比如采用静电 除尘、加入脱 As 剂等,去除催化剂毒物级固体颗粒物,避免催化剂中毒。另外,催化剂的 自主研发与工业应用研究还需深入。催化剂的成本占脱硝工程总成本的 30%~40%,如果能 实现催化剂国产化,将使该技术的竞争力迈上更高台阶。

3.2 缺乏独立自主的 SCR 脱硝技术 目前,国内已建成的大型 SCR 脱硝工程基本是采用全套进口设备或引进技术和关键设备, 投产后效果较好。但同时又都存在建设投资大、运行费用高(采用 NH3 选择性催化还原法 净化燃烧尾气,削减单位 NOx 排放量所需费用高于脱 SO2,其原材料的来源也较困难)、 不符合国内习惯等问题,采用技术引进也存在需要支付高额的技术使用费,在工期、技术方 面都受制于人为因素等问题。 缺乏大型火电机组烟气脱硝的核心技术, 没有成熟的自主 SCR 工艺成为我国大面积实施烟气脱硝的“无芯之痛”。 3.3 运行中存在的安全问题 SCR 系统工作过程中会把烟气中的 SO2 变成 SO3,对于燃用高硫煤的电厂一定要引起特别 注意。在 SCR 系统工作过程中,烟气中的 N2O 会有所增加,而 N2O 对 O3 层的危害更大。 另外, SCR 系统中所用的还原剂 NH3 是常见的有毒有害物质, 使用过程中有潜在的危险性。 若废弃固体催化剂处理不当,容易引起二次污染[2]。 4 结论和建议 (1) SCR 烟气脱硝技术作为目前最成熟、效率最高的脱硝技术,我国应加快技术引进、 消化吸收,并建立起独立自主的 SCR 脱硝技术体系。 (2)加快催化剂的自主研发与工业应用研究。针对我国火电厂燃用煤种特点,开发出自主 知识产权的催化剂和低温运行的催化剂。提高 SCR 系统催化剂的活性,降低生产、运行成 本,并尽快商业化和产业化。 (3)组织发电企业、设计单位、锅炉厂、风机厂等专家对国内已经运行的 SCR 烟气脱硝系 统进行技术研讨,分析存在的问题,尽快找出解决办法,推广已经运行的 SCR 烟气脱硝系 统的经验,为 SCR 烟气脱硝技术的国产化奠定基础。 (4)制定更严格的烟气排放标准和更有效的经济政策扶持。烟气脱硝技术进展缓慢的一个 主要原因就是 NOx 排放无需收费,而且排放标准相对宽松,火电厂只需采用简单的低 NOx 燃烧技术就能达到要求。同时有关部门应制定脱硝优惠措施,包括优先上网、环保折价、资 金补助等,提高火电厂脱硝的积极性。

 

热购彩票 苹果彩票开奖 苹果彩票注册 微购彩票微信群 苹果彩票娱乐 苹果彩票代理 微购彩票开户 热购彩票充值 金丰彩票 金丰彩票